Page 524 - Capire la Fisica
P. 524

Poiché non è stata fatta alcuna ipotesi sulla posizione dei due oggetti, ne deduciamo
            che il momento totale delle forze è diverso da zero anche se la risultante delle forze
            esterne è nulla. Pertanto il momento angolare del sistema in genere non si conserverà

            nel tempo.

            (f) Consideriamo ad esempio la seconda particella; il suo momento angolare L2(O) è le-
            gato al momento               delle ferze agenti su m2 dalla relazione:






            È evidente che il momento delle forze agenti su m2 è generalmente diverso da zero e

            quindi, anche in questo case, il momento angolare della particella non si conserverà
            nel tempo.

            Esercizio 16: Un proiettile viene sparato in direzione verticale dalla superficie della

            Terra con velocità iniziale v0.

            Si determini il valore minimo di v0 per il quale il proiettile può sfuggire all’attrazione
            della Terra.


                                                                                    24
            Raggio della Terra: R = 6400 km; massa della Terra: M = 6 x 10  kg,  = 6.67 x 10           -11  N
               2
                   2
            m /kg .
            Soluzione: La minima velocità necessaria affinché il proiettile possa sfuggire all’attra-

            zione gravitazionale della Terra (velocita di fuga) si calcola imponendo che il proiettile
            raggiunga distanza infinita dalla Terra con velocita nulla.

            Assumendo che l’energia potenziale gravitazionale sia nulla all’infinito, si ha che all’in-

            finite l’energia meccanica totale è nulla.

            Dal momento che l’energia meccanica si conserva, si conclude che l’energia meccanica
            totale è sempre uguale a zero. In particolare, sulla superficie terrestre si ha:







            Da cui si ottiene la velocità di fuga:








                                                       Corpi Estesi






                                                            524
   519   520   521   522   523   524   525   526   527   528   529